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Abstract.  This paper follows an earlier work by Bucher et al. [1] on the application of 
wavelet transforms to the boundary element method, which shows how to reuse models 
stored in compressed form to solve new models with the same geometry but arbitrary 
load cases - the so-called virtual assembly technique. The extension presented in this 
paper involves a new computational procedure created to perform the required two-
dimensional wavelet transforms by blocks, theoretically allowing the compression of 
matrices of arbitrary size. Details of the computer implementation that allows the use of 
this methodology for very large models or at high compression ratios are given. A 
numerical application shows a standard PC being used to solve a 131,072 DOF model, 
previously compressed, for 100 distinct load cases in less than 1 hour – or 33 seconds 
for each load case. 

1. Introduction 

The solution of very large problems arising from the Boundary Element Method (BEM) 
is still a big challenge for most industrial application developers due to the O(N2) 
growth of the system matrices as the number of degrees of freedom in the model 
increases.  Several methods were suggested [2][3][4][5] where this explosive growth is 
substituted by a less restrictive behavior of order O(NlogN).  However, these methods 
require a complete rewriting of all routines used to perform the calculation of 
coefficients of the BEM matrices and, most often, also require the development of new 
companion solvers, upper bounds and respective spectral estimates.  

However, reutilization of previous results obtained through extensive research during 
the last few decades is of importance for both academic researchers and software 
developers.  For academic researchers it is important to have a solid theoretical basis so 
other researchers can verify new achievements independently.  For developers, knowing 
extensively the key technologies used in the software is of prime importance so they can 
oversee any possible malfunction or even failure. 

This work proposes a new methodology that extends achievements obtained in a 
previous work [1] to medium and large problems – of order 105 – while, at the same 
time, retaining all previous algorithms found in many textbooks, whose characteristics 
are well studied and documented.  The key on this methodology is a block transform 



that acts as a black box, which can be seamlessly included in most classic source codes 
with just a small effort.  Furthermore, the use of the Virtual Assembly (VA) technique 
empowers the block transform such that processed matrices can be reused in their 
compressed form to rapidly solve an arbitrary number of different load cases. 

2. Review of the wavelet theory 

Deriving a wavelet-like transform has been a goal for many mathematicians from as 
early as the beginning of the 20th century [6] but only in recent years this was 
summarized in a single, coherent theory [7][8].  The interested reader may refer to the 
cited works for an in-depth review of the theory but, for the sake of understanding how 
wavelet transforms can be used for numerical applications, it is sufficient to make a 
comparison with the Fourier transform.  

First, both transforms are simple rotations in space and, therefore, they preserve 
dimensionality.  The consequence is that they take a vector of N samples and produce 
another vector with exactly N coefficients.  A positive feature of both transforms is that 
fast algorithms are easily available for forward and inverse operations. The Fast 
Wavelet Transform (FWT) is usually much faster than the Fast Fourier Transform 
(FFT) since the former does not require the computation of any transcendental function, 
just sums, subtractions and multiplications. 

Therefore, both transforms are completely alike and share the same basic principles. 
Table 1 shows how this relationship goes even farther.  The series expansion is basically 
the same but the wavelet transform is a double summation instead of a single 
summation as in the case of the Fourier transform.  The reason is that, in the case of the 
Fourier transform, the variable j means frequency; the respective coefficient dj can be 
interpreted as the amplitude of a sinusoidal function with infinite support.  The wavelet 
coefficient dj,k, however, can be viewed as the amplitude of a small wave-like 
perturbation, a wavelet; the usual example of wavelet is a sine wave multiplied by a 
Gaussian window.  In this case, the variable j refers to the frequency of this wave and 
the variable k refers to its energy center in time. 

The basis functions are, for Fourier, complex exponentials while for wavelets they can 
be any function that meet the wavelet conditions [8].  In spite of this, all basis functions 
are related to a single function called the “mother” wavelet, which generates the rest of 
them by simultaneous scaling and translation operations (see Table 1).    

A group of conceptually-related mother functions is called a family; some examples of 
families are Daubechies, Coiflets, Symmlets and B-Splines [8].  Mother functions differ 
by their order, which is related to the number of coefficients of their respective FIR 
filter (a parameter of the FWT).  Usually, the higher the order, the better the spectral 
quality but longer it takes to compute the FWT.  

The evaluation of coefficients is basically the same - the integral and respective inverse 
operations, as previously mentioned, count with an O(N.logN) fast algorithm to speed-
up their computation.   

The orthogonality condition guarantees that reconstruction is perfect and energy is 
preserved after the transform.  

 



 Table 1  Comparison between the Fourier and wavelet series 
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3. Review of the virtual assembly technique 

The BEM, in its direct formulation for potential problems, generates the following 
system of equations when the standard point collocation technique is used [9]: 

GqHu =  (1)

The coefficients of the matrices G and H in the above equation result from the 
integration of the fundamental solution and its normal derivative within each element. 
Vectors u and q contain nodal values of the variable under consideration and its 
derivative in the normal direction.   

According to the virtual assembly technique presented by Bucher et al. [1], the original 
system of equations (1) may be expressed as a function of the compressed boundary 
element matrices  

)(~ TWHWtresholdH =  (2)

and 

)(~ TWGWthresholdG =  (3)

such that an alternative form of the original system of equations (1) is generated: 
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where W is the linear operator representing the orthogonal transform used to compress 
the original matrices H and G, very often the wavelet transform.  XG and XH are 
diagonal operator matrices such that their coefficients are 
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λG and λH are operators responsible for applying boundary conditions and consequently 
generating the traditional system of equations Ax=b.  Instead of exchanging rows and 
columns in the traditional procedure, we write each nodal value u and its derivative q as 
a function of the respective unknown x in the solution vector as 
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This operation will allow solving the system using the two matrices, G and H, in their 
compressed form without generating the system matrix A, therefore justifying the 
expression “virtual assembling”.  This technique produces a greater freedom for 
application of diverse boundary conditions, as shown in Table 2.   

 

 

 
Table 2 Boundary conditions applied through the virtual assembly technique 

Condition type Expression Implementation 
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Therefore, the new system matrix is recognized as 
( ) ( ) GH XWGWXWHWA ~~ TT −=  (7)

and the force vector is calculated by 
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As this system of equations remains in the original space, all algebraic properties such 
as convergence rates and condition numbers are preserved except for the often-
negligible distortion introduced by the thresholding operation. 

Several papers have studied the final effect of thresholding on the residual.  Koro and 
Abe [10][11] showed that there is an optimal threshold for Beylkin-type matrix 
compression such that the residual error is equal to the intrinsic error introduced by 
discretization of the system boundary.   

In the case of the virtual assembly technique, it is clear that final errors on the residuals 
will be quite different depending on the boundary condition applied. This is easy to see 
in equation (7), where the system matrix is written as a combination of the original 
matrices H and G and the diagonal, boundary-dependent matrices X.   Thus, depending 
on the boundary condition applied, the dominant matrix will be either H or G, and this 
should have an impact on the optimal threshold value.  

Therefore, in the case of the virtual assembly technique, there is no optimal threshold to 
be used at the compression phase.  However, if  “optimal” means an average value for a 
high number of load cases, the thresholds suggested in [10] and [11] are in fact the best 
available estimates.  

4. The block transform 

Obtaining the compressed matrices (2) and (3) requires full integration of matrices H 
and G before the transform and threshold operations can be applied.  As the size of the 
matrices increase quadraticaly with the number of degrees of freedom, memory 
consumption becomes a major concern.  Gonzales et al. [12] presented a solution to this 
problem where a parallel version of the wavelet transform is introduced, which avoids 
the single computer memory limitation but does not decouple the relationship between 
problem size and total memory available at one instant in time. 

An effective solution to deal with problems of arbitrary size, independently of the 
amount of memory available in the computer, is possible by using a novel algorithm 
developed in this paper, the Block Wavelet Transform (BWT), which allows the 
compression and reutilization of the compressed blocks in computers equipped with 
virtually any amount of memory.  By partitioning the BEM matrices by blocks, memory 
requirements are exchanged by time requirements which are very often less restrictive.  
Blocks can then be freely resized to fit the maximum memory of each computer, 
therefore maximizing the use of available resources.  

Despite sharing some very basic ideas with other wavelet algorithms with the same 
name used in image compression by Cetin et al. [13] and Huh et al. [14], the BWT is 
based on a completely new theoretical development.  In those papers, the wavelet 
transform is used to compress blocks of images that will be saved and decompressed 
when needed.  Decompression, however, is unacceptable since the size of the original 
matrix might be orders of magnitude larger than the available memory.  Thus, the block 
compression methodology must include a strategy to use the blocks for solving the 
system in its compressed form, which is done by using a mapping matrix known as 
adjacency matrix in the finite element terminology [15][16].  The adjacency matrix 
allows the description of the original system matrix in a series where the coefficients are 
blocks and the basis functions are the adjacency matrices. 



However, not all possible matrix partitions are valid. In other words, there must be a 
condition that guarantees that no block overlapping or lack of coverage will occur. This 
work advances beyond the basic adjacency matrix concept by defining a way of 
restraining the grid partition through a condition called the admissibility condition:   

Partition admissibility condition.  A block partition is valid if and only if any matrix A 
can be reconstructed from its respective blocks Ak, k=1 to M, through the series 
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The special adjacency matrices L that appear in this series are called Insertion-
Extraction (IE) matrices to emphasize that these are linked to new matrices with special 
partitioning properties.   

Each IE matrix is denoted by the symbol i
nN ,L , where i is the index in the expansion 

series, N is the size of the original, full matrix (supposed to be square), and n is the size 
of the respective block.  All elements in an IE matrix are zero but those in the diagonal 
that starts at column i, which are ones. This shape provides two important block 
properties, also illustrated in Figure 1: 

Extraction property.  A square block Ak  of size n, located at the position (rowk,colk) of 
a generic matrix A, can be extracted by pre-multiplying the transposed version of the IE 
matrix krow

nN ,L  followed by post-multiplying the result by the IE matrix kcol
nN ,L   such that  
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Both properties can be better understood with the help of Figure 1. 
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Figure 1  Properties of the Insertion-Extraction (IE) matrix 

In this way, using the extraction property (10) for decomposition and the insertion 
property (11) for reconstruction, the square matrix A can now be sliced into M distinct 
blocks Ak , k = 1 to M, each of them located in one particular position (rowk,colk) and 
with size nk.   

4.1. Matrix-vector multiplication in blocks 

The product b = A x between the original matrix A and a vector x can be performed in 
blocks by using the admissibility condition (9), when the following expression is 
obtained 
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M
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The computation of such operation is in fact a fast procedure, which is better understood 
with the help of Figure 2. 
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at position colk of vector x 
 (b) Multiply the result by block k 

 (c) Accumulate the result in an initially 
empty vector beginning at position rowk 
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c  
Figure 2  Algorithm to calculate the matrix-vector multiplications in blocks 

Global compression is obtained by compressing each block separately using the two-
dimensional transform chosen, an operation that is represented by the following 
expression:  

T
nknk kk

WAWA =~  (13)

where kA~  represents the transformed block already sparsified by thresholding it, i.e. by 
neglecting its most non-significant elements.  As the transform is orthogonal, the 
original, non-transformed block can be recalculated by  
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The admissibility condition (9) for the adopted partition must hold for any square matrix 
A of size N. Therefore, applying equation (14) into the admissibility condition (9), the 
expression of the reconstructed, original matrix is obtained: 

( )∑
=

=
M

k

Tcol
nNnk

T
n

row
nN

k
kkk

k
k

1
,,

~ LWAWLA  (15)

This last equation expresses the original matrix A as a function of the compressed 
blocks Ak.  The above matrix-matrix multiplication will never be computed directly but 
is used to calculate the matrix-vector multiplications as required by the iterative solver.  
The new algorithm is better understood with the help of Figure 3. 
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Figure 3  Algorithm to calculate the matrix-vector multiplication using the 

compressed blocks 
This algorithm allows the matrix-vector multiplications required by the iterative solver 
using the blocks that were compressed by using an arbitrary partitioning grid.  But when 
the adopted grid is chosen in such a way that all blocks have a constant size, then huge 
savings can be obtained.  Given that all blocks in a regular grid have the same size n, the 
position of each block can be expressed by 

( )1 1= − +irow i n  

( )1 1= − +jcol j n  
(16)

where the variables i and j span the range from 1 to √M, the square root of the total 
number of blocks, equal to the number of blocks per side.   Using this regularity, 
expression (15) can be simplified to 

= TA B AB  (17)

where the new transformation matrix B and the new compressed matrix Ã are given by  
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The latter results were obtained by noticing that the admissibility condition guarantees 
that the blocks do not overlap nor leave any matrix region uncovered.  The new 
algorithm for calculation of the matrix-vector multiplications can then be easily 
computed as shown in Figure 4.  
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Figure 4  Algorithm to perform the matrix-vector multiplication when the blocks 

are divided and compressed using a regular grid 

The regular form of the matrix-vector multiplication algorithm is naturally faster than 
the generic form because it avoids one summation level.   

5. Computer implementation 

Two aspects of their respective computer implementation heavily affect the 
performance of the proposed algorithms.  First, compressed blocks must be stored as a 
sparse matrix for which there are many formats available.  Second, as the virtual 
assembly technique enforces the reusability of the compressed matrices to calculate 
several load cases, the compressed blocks must be saved in a persistent media when 
there is a choice of format to be used: text or binary. 

There are two popular storage formats for sparse matrices available [17][18]: 
compressed row (CR) and compressed coordinate (CC).  

The compressed coordinate format is very simple, as illustrated in Figure 5.  The total 
size used by this format to store the sparse matrix is 16ne when 8-byte doubles and 4-
byte integers are used, where ne is the number of non-zero coefficients in the original 
matrix.  This format is suitable for very sparse matrices.  
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Figure 5  Sparse storage using the coordinate format (example) 

The compressed-row format adds an additional level of compression to average and 
very populated sparse matrices.  This format effectively reduces the storage space 
required by matrices whose number of coefficients ne is greater than the number of 
rows N, which is the case of most finite element models.  The storage space required by 
the compressed-row format is 4N+12ne bytes (assuming 8-byte doubles and 4-byte 
integers). 
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Figure 6 Sparse storage using the compressed-row format (example) 

When the wavelet compression is applied, however, threshold values are set such that 
an optimum balance between compression ratio and error introduced in the solution is 
obtained. Therefore, the resulting sparse matrices may have more or less significant 
coefficients ne than their respective block size N, leaving open the choice of the best 
sparse format to adopt.  Figure 7 shows the apparent compression ratio, i.e. the relation 
8N2/TotalSize, where TotalSize is the amount of memory required to store the sparse 
structure, as a function of the number of significant coefficients ne.  Several block sizes 
are plotted in Figure 7, ranging from 128 to 8192. 
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Figure 7 Compression ratio as a function of the number of coefficients in the 

sparse matrix for several block sizes and sparse formats 
As shown by Figure 7, the compressed-row (CR) format is superior to the compressed 
coordinate (CC) format when the number of coefficients in the sparse matrix is more 
than its size, i.e. when the compression ratio is low. Therefore, the compressed-row 
format is not indicated to hold the sparse structures when the compression ratios are 
expected to be high. In this case, the coordinate format is better suited. Still, even in the 
case where there are many coefficients in the sparse matrix, the compression ratios 
resulting from the use of the coordinate format are not much lower than those obtained 
by the compressed-row format. 

Despite the fact that double floating point values are required to obtain accurate results 
in most numerical applications, in many cases it is acceptable to introduce a certain 
amount of error by changing the type of the matrix elements from 64 bit doubles to 32 
bit floats.  This was found to introduce a relative RMS error less than 10-6 in the 
solution of all models studied in this paper. 

An additional compression effect can be obtained by changing integer values from 32 
bits to 16 bits. This will limit the compressed-row (CR) format to 65,536 coefficients 
maximum but will only limit the compressed coordinate (CC) to the maximum block 
size of 65,536, which is much less restrictive since most systems will already be limited 
to blocks of 8192 elements due to memory availability – 512 MB in this case. Figure 8 
shows the effect of these changes in the resulting compression ratios.   
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Figure 8  Additional compression effect caused by substitution of 64-bit doubles 

and 32-bit indices by 32-bit floats and 16-bit integers 
Under very high compression ratios, very often no coefficients in a block are above the 
adopted threshold value, which results in an empty sparse structure.  By removing the 
contribution of the block’s average plane, the matrix-vector multiplication will then 
always be represented, even if all the block coefficients after the transform operation lie 
below the specified threshold value. 

The average plane π of a square matrix A is the one that minimizes the least squares 
condition 
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where  SX, SY and S0 are matrix moments, calculated by 
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Therefore, compression is performed not on the original block but on the block resulting 
from the subtraction of the average plane from the original block.  The calculation of the 
average plane and its subsequent subtraction are often done very fast and do not 
contribute to significantly increase the amount of compression time. 

The additional task of deciding the storage format to save the compressed blocks must 
still be studied with care since the original uncompressed matrices can easily reach the 
size of 500 Gigabytes.  A binary format allows rapid I/O but it is not unique to all 
platforms.  A text format tends to be more universal but it requires a lot more disk 
space, typically 5 to 10 times the binary format, and allows very slow read operations, 
typically 100 times slower. 

The solution found in this work is the use of a universal binary format called XDR [19].  
This format is heavily used in message passing APIs such as PVM.  Just part of the 
specification was implemented, only enough to handle integer (16 and 32 bits) and 
floating point (double and float) types.  Portability was tested on the following 
platforms: Intel PC/Windows (GNU GCC v2.95.2 and MS Visual Studio C++ 6 
compilers), Sun/Solaris (GNU GCC v2.95.2), DEC Alpha/OSF (GNU v2.95.2 and 
Alpha C++ compilers).  A series of I/O tests using a standard Intel PC computer were 
performed to test the difference between a text format and a binary format; their results 
are shown in Table 1.  

 
Table 1  Times (in seconds) obtained for input and output of a vector from 
memory to the hard drive using the XDR format and a simple text format  

Binary (XDR) Text 

Floating point Integer Floating point Integer 

Vector size 

Write Read Write Read Write Read Write Read 

500 kb 0.08 < 0.01 0.07 < 0.01 0.82 0.59 0.64 0.20 

5 Mb 0.66 0.11 0.88 0.22 10.27 6.98 8.68 2.58 

50 Mb 9.82 0.83 10.66 0.82 95.58 73.93 81.68 31.42 

1Gb 192.4 15.97 208.7 15.4 1902.3 1450.9 1631.5 620.2 

The binary format presented an average performance 10 times superior to the text 
format for output.  The largest difference occurs in the reading operation when the 
binary format is 100 times faster than the text, with the exception of reading times for 
integer numbers, when it is only 40 times faster. 

A 1Gb sparse matrix in coordinate sparse format is composed of about 512Mb of 
floating point numbers and 512Mb of integer numbers, which will require 31.4 seconds 
to be read in binary format.  If text format is used, this time raises to 34 minutes, a 65 
times increase.  The final implementation decision was then to adopt 16-bit, compressed 
coordinate format and store the resulting compressed blocks in the partially compliant 
XDR format described above. 

The final computer implementation workflow is shown in figure 9, where a regular grid 
strategy was used for matrix partitioning. 



1. Adopt a matrix partition 
2. For each cell in the partition do 
 2.1. Assemble blocks Gk and Hk 
 2.2. For each block Gk and Hk 

 2.2.1. Compute average plane (π) 
 2.2.2. Subtract block from its average plane (π) 

  2.2.3. Compress block (2D transform and threshold) 
 2.3. Store final sparse structures and π coefficients in XDR format 

1. (If not already in memory) Load compressed blocks 
2. Compute force vector 
3. Initialise iterative solver with an initial guess 
4. While (stop condition not reached) 
 4.1. Initialise a residual vector with the computed force vector 
 4.2. Apply virtual assembly technique to split the solution vector x into a pair (xh, xg) 
 4.3. For each BEM matrix (G,H) - and respective (xg, xh) 
  4.3.2. Forward-transform the solution vector x in strips 
  4.3.2. For each block do 
   4.3.2.1. Multiply the compressed block by the respective strip 
   4.3.2.2. Inverse-transform the resulting strip 
   4.3.2.3. Add the contribution of the average plane 
   4.3.2.4. Accumulate the result in the residual vector 
 4.4. Compute a new solution vector based on the new residual vector 

Solution Phase 

Assembly Phase 

 
Figure 9 Code workflow of the block wavelet transform using virtual assembly 

technique (BWT-VA) 
 

6. Numerical application 

To demonstrate the applicability of the present theory, the problem of a concrete column 
subject to a heat flux – dependent on the exterior temperature – in each side is analysed, 
as shown in Figure 10.  At the boundaries, the heat flux (q) is proportional to the 
temperature difference between the column (u) and the ambient temperature (us).  This 
boundary condition is expressed by  

( )suuhq −−=     (26) 

where h is the heat transfer coefficient between the column and the air. 
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Figure 10  Geometry and boundary conditions, concrete column problem 

The interior ambient has a temperature of 25oC and, in this region, the column received 
a surface treatment to lower its heat transfer coefficient to 0.1 cal/m2/s/oC.  The external 
ambient has a constant temperature of 0oC and its surface is subject to strong 
convection, which brings its heat transfer coefficient to 0.5 cal/m2/s/oC. The value of the 
heat transfer coefficient decreases linearly to zero in the central region.  

Boundary conditions as given by  (26) can be represented in the virtual assembly 
technique as  

s
G

H

huqhxx
uxx

=−=
==

0

0
   ,

0   ,
λ
λ  (27) 

 

To analyse the influence of different block sizes, this model was discretized with 4096 
constant elements and then solved with both a Gauss solver and the iterative solver 
implementing the block compression as described in this paper.  Although absolute 
numbers are important, attention must be kept on the behaviour of compression ratio 
and errors as block sizes are changed. 

This model was partitioned using blocks of different sizes: 512, 1024, 2048 and 4096 
elements.  Each partitioning was submitted to a battery of 400 tests, each one varying 
thresholds in the range between 10-8 to 10-3.  Errors were then obtained by comparing 
the iterative solver solution with the solution obtained with the standard Gauss solver. 
The wavelet Daubechies with 6 coefficients [8] was used for the necessary transform. 
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Figure 11  Evolution of the error for the temperature, for different block sizes and 

threshold values 
Figure 11 suggests that the error is not dependent on block size, what is corroborated by 
successive experiments.  As partition grids can be placed anywhere inside the boundary 
element matrices, it is very difficult to find a theoretical upper bound for the error 
above, apart from very special cases where the mapping between degrees of freedom in 
the model and their respective equations inside each block is simple. 
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Figure 12  Compression ratio as a function of threshold value and block sizes 

Figure 12 shows that there is a direct relation between block sizes and compression 
ratios.  As block size increases, the resulting compression ratio also increases, for the 
same error. 



The above findings simplify the effort of correctly choosing compression parameters 
since the resulting error is independent of block size.  This parameter, therefore, can be 
chosen independently as a function of the available memory and computer time. 

A new BEM model was then created using this same physical model but now 
discretized using 32,768 constant elements per side, which totals 131,072 degrees of 
freedom. A Pentium III 900MHz with 1.5GB RAM was used to solve this problem.  

In the assembly phase, the G and H matrices were partitioned into 256 blocks of 
identical size – 8192.  Following the algorithm in Figure 9, blocks were calculated, 
compressed and then saved in XDR format.  This process generated 256 files that 
consumed 360 Megabytes of disk space (roughly a single CD), against 262 Gigabytes 
that would be necessary to store the two uncompressed matrices, which results in a final 
compression ratio of 720 to 1. The times to compress and store each block can be 
depicted in Table 2, where respective times for blocks with 2048 and 4096 elements 
were also included for comparison purposes.  

Table 3  Times (in seconds) to generate and compress  
blocks with sizes 2048, 4096 and 8192 elements 

Block size (elements) 2048 4096 8192 

Block size (in memory) 64 MB 256 MB 1 GB 

Integration 6.2 27.2 126.7 

Interpolation plane 1.0 7.8 37.2 

2-D Transform 2.8 21.2 101.4 

Sparsification 0.6 2.0 7.0 

Storage 0.7 0.9 2.1 

Total (per block) 11.3 59.1 274.4 

 

It is noticeable that, unlike the integration and sparsification steps that scale well with 
block size, the interpolation and transform steps took approximately 25% more time 
than expected – a four time increase as block size doubles – due to the characteristic 
O(N2log2N) behaviour of these algorithms. This increase, especially in the case of the 
2D transform, is also due to memory cache; for the case with block size 2048, both 
matrices G and H completely fit into the memory cache of the machine that executed 
these tests and, therefore, all convolutions were done entirely in fast memory.  Blocks of 
4096 and 8192 elements, however, can hardly stay in cache due to the competition from 
other processes, including the operating system. 

In the solution phase, combining 10 different external heat transfer coefficients and 10 
internal heat transfer coefficients created a set of 100 different load cases.  Each load 
case was solved using the same parameters:  

• GMRES iterative solver with diagonal preconditioning; 

• Stopping criterion: relative residual RMS error in the force vector less than 10-12; 

• Restart in 25 iterations. 

The diagonal preconditioning feature was only possible because the diagonal elements 
were stored uncompressed within the compressed blocks where they originally lie. 



As these problems were impossible to run with well-known solvers as plain iterative 
solvers (matrix in uncompressed form) or Gauss elimination, we estimated the error by 
interpolating the value of a 8192 DOF problem solved with a Gauss solver into the 
131,072 elements of the current one, which is not a bad estimate since most of the 
temperature and heat fluxes variations are smooth. The relative RMS error of the 
temperature was not allowed to grow above 10-3.  Performance results are shown in 
Table 3. 

 
Table 4 Main statistics of the solution of a 131,072 element problem using the block 

wavelet transform plus virtual assembly technique 

Load time 6.2 s 

Average number of iterations per load case 19 iterations 

Average time per iteration 1.7 s 

Average solver time per load case 33.1 s  

 

As can be seen in Table 3, the loading time of the whole compressed structure was, on 
average, 6.2 seconds, which is roughly the time it takes to evaluate the integrals of a 
single 8,192-element block.  This low time is mostly due to the adopted XDR binary 
format since a text format would take at least 6 minutes and 40 seconds to load, 
according to the previous estimates.  Using XDR not only retained the loading speed at 
low values but also made it possible to use this dataset in several different platforms. 

After loading, no significant operation takes place until the GMRES cycles, each of 
which took, on average, 1.7 seconds to complete.  The number of iterations per load 
case, for the same tolerance value of 10-12, was roughly the same for most load cases, 
with minima of 8 and maxima of 40 iterations.  The total wall clock time spent to 
calculate all 100 load cases was 56 minutes and 21 seconds. 

7. Conclusions 

The results of this work indicate that there is a large class of industrial problems that can 
greatly benefit from the BWT-VA approach, particularly large models with multiple 
load cases. These problems benefit from the reusability of the compressed matrices 
provided by the current approach.  

The numerical application demonstrated that a 131,072 DOF problem, which would 
otherwise require 262 Gigabytes of disk storage, can be compressed to fit the size of a 
single CD and then reused at any time to solve many different load cases with no need 
for decompression. Very high compression ratios were obtained (720 to 1), making it 
possible to achieve very fast loading (6.2 seconds) and solution (33.1 seconds) steps for 
a 131 thousand DOF problem, which was solved in a rather standard desktop computer. 

As the VA technique keeps the iterative process in the same mathematical space as the 
original, uncompressed problem, all existing theoretical upper bounds and estimates 
may still be used in full.  The combined BWT-VA technique takes as input the results of 
widely available integration algorithms, as those found in most textbooks, and therefore 
there is no need to develop new quadrature algorithms. The application of boundary 



conditions, which is a major problem for most similar algorithms, is only considered in 
a phase posterior to compression. 

The block transform theoretically allows the solution of problems of any size by 
breaking the problem into small blocks that are compressed separately, therefore 
exchanging memory size by computational time, which is a softer limitation in most 
cases.  Numerical experiments concluded that block sizes directly influence the 
resulting compression ratio, but do not affect error levels, which depend strictly on the 
adopted thresholds.  Given the potentially high compression ratios, it was shown that 
the coordinate compressed sparse method is the best alternative, with XDR standard 
being used for individual element storage, improving loading speed, disk size and 
portability. 

The work also shows that, for very high compression ratios, several blocks can be wiped 
out by the thresholding operation. To bypass this problem, a plane interpolation scheme 
was presented that represents these otherwise degenerated blocks while not introducing 
any overhead in the solver phase. 
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